Modeling Nash Equilibria in an Electricity Market

Jamie Weber
Director of Operations
PowerWorld Corporation

2001 South First St Champaign, IL 61820 weber@powerworld.com 217 384-6330 ext 13

Primary Reference is

J.D. Weber and T.J. Overbye "An Individual Welfare Maximization Algorithm for Electricity Markets," *IEEE Transactions on Power Systems*, vol. 17, no. 3, August 2002, pp. 590-596.

Electricity Market Model

- Market participants (individuals) will consist of generator and loads submitting bids into the market
- Market will be cleared using an OPF or SCOPF solution
- All individuals will receive (or pay) the price at their market node.

Market Bid Setup

- Suppliers and Consumers submit generation and load bids
 - —For given price, submit a generation or load level

We will vary Market bids: Limit Possible Bids to Linear

• Each supplier chooses some ratio above or below its true marginal cost function

What does an Individual Want?

- Individual knows the method used to calculate its price and dispatch
 - An OPF or SCOPF will be solved
- Individual has some idea, based on past history, what its opponents are likely to bid
 - Make an assumption about their bids
- Using this information, an individual wants to determine a bid that will maximize its overall individual welfare

$$f(\mathbf{s}, \mathbf{d}, \lambda) = \sum_{\substack{i = \text{controlled} \\ \text{demands}}} [\underline{B_i(d_i)} - \underline{\lambda_i d_i}] + \sum_{\substack{\text{controlled} \\ \text{supplies}}} [-\underline{C_i(s_i)} + \underline{\lambda_i s_i}]$$
Revenues

Algorithm for determining a Best Response in this Market Structure

A "Nested Optimization Problem"

Market with Multiple Individuals

- Now consider a market with multiple market place participants (individuals)
- Assume they are all trying to maximum their welfare and determine optimal bids in the manner
- What will the market response be at a *steady state*?

Economic Market Equilibriums:The Nash Equilibrium

- Definition of a Nash Equilibrium
 - An individual looks at what its competitors are presently doing
 - The individual's best response to competitors' behavior is to continue its present behavior
 - —This is true for ALL individuals in the market
- This is a Nash Equilibrium

Iterate the Nested Optimization Problem to find the Equilibrium

- Start all individuals at bids of k = 1
- Run the nested optimization for each individual and set its bid to its "best response"
- Continue running this optimization until the individuals stop changing their bids
- This will be a pure strategy Nash Equilibrium
 - —Pure strategy: each bidder bids the same all the time

Simple Two Bus Example with Three Individuals

$$B_{2}(d_{2}) = k_{d2} \left(-0.04d_{2}^{2} + 30d_{2}\right)$$

 $\frac{g + jb = -j20.6143}{80 \text{ MVA Line Limit}}$

V = 1.00 pu Bus One

$$C_1(s_1) = k_{s_1} \left(0.01 s_1^2 + 10 s_1 \right)$$

$$C_2(s_2) = k_{s2} \left(0.01 s_2^2 + 10 s_2 \right)$$

Consider Both Supplies "Competing" with NO Line Limit

- Set kd=1.00, then run competition
- Results: $k_{g1} = 1.1502$ and $k_{g2} = 1.1502$

Iterations

A Graphical Look at Nash Equilibrium in Two Dimensions

 Nash Equilibria are where the Optimal Response curves meet

Results for Both Supplies Competing with an 80 MVA Line Limit

What's going on here?

Optimal Curves Never Meet! No Equilibrium

Discontinuous Optimal Response?? Caused by Local Maxima

• Supplier #2 Profit Curves for values of k_{g1} on either side of discontinuous point

Does an Equilibrium Exist?

- We are only considering "pure" strategy
 - —Only have shown that no pure strategy exist
- What are "mixed" strategy?
 - —An individual chooses several pure strategies and assigns a probability to each.
 - The individual then submits these pure strategy according to their probability
- By including mixed strategy, a simple equilibrium is seen for this example

Mixed Strategy Nash Equilibrium

- Supplier #1: Bid
 - $-k_{s1} = 1.372$ always
- Supplier #2: Bid
 - $-k_{s2} = 1.246$ with Probability 0.56
 - $-k_{s2} = 1.525$ with Probability 0.44
- For supplier #2:
 - Best response because when supplier #1 bids 1.372, supplier #2 has no preference between the two bids shown. Arbitrary probabilities are fine

Supplier #1: Expected Profit

• Expected Profit is maximized at $k_{s1} = 1.372$

For $k_{s2} = 1.246$ with Prob 0.56 and $k_{s2} = 1.525$ with Prob 0.44 Maximum at Expected Supplier #1 P $k_{s1} = 1.372$ 1.15 1.2 1.25 1.35 1.3 1.4 1.45 1.5 1.55 1.6 Supplier #1 Bid

Conclusions from Two-Bus Example

- Constraints can eliminate "pure" equilibrium
- Calculus-based method can not generally find more than one local optima, but ...
 - Human experience will guide the algorithm user to constraints which can be gamed
 - —Still useful for multiple local optima

Other Notes

- As the number of participants in the market increases, generally these market dynamics will decrease.
- However, transmission system constraints can create a pocket of the system that may only be served by a small number of participants.
 - —You would expect to see the same kind of behavior during these times.

